摘 要:主要介紹鈦合金及鍛造工藝,以航空生產(chǎn)中發(fā)現(xiàn)的TC4鍛件鍛造缺陷并改進(jìn)工藝的過(guò)程為例,分析了鈦合金鍛造的工藝特點(diǎn)及在航空工業(yè)中的應(yīng)用和發(fā)展前景。
1、概述
隨著我國(guó)國(guó)民經(jīng)濟(jì)、科學(xué)技術(shù)的大發(fā)展,航天、航空工業(yè)近年迎來(lái)了新的發(fā)展契機(jī),尤其在國(guó)家“大飛機(jī)”項(xiàng)目立項(xiàng)后,民用航空制造產(chǎn)業(yè)將成為引領(lǐng)國(guó)民經(jīng)濟(jì)發(fā)展的新的經(jīng)濟(jì)增長(zhǎng)點(diǎn),有著廣闊的發(fā)展前景。民用航空制造企業(yè)為了不斷提高飛機(jī)的先進(jìn)性、可靠性、適用性,增加國(guó)產(chǎn)飛機(jī)的國(guó)際市場(chǎng)競(jìng)爭(zhēng)力,對(duì)航空制造材料的選擇要求越來(lái)越高;鈦合金的主要特點(diǎn)是比重小,強(qiáng)度高,同時(shí)具有良好的耐熱、耐腐蝕性能,成為現(xiàn)代飛機(jī)受力構(gòu)件的主選材料,大大減輕了飛機(jī)重量,其中TC4(Ti-6AL-4V)和TB6鈦合金鍛件在航空制造中應(yīng)用較多。
2、鈦合金及鍛造工藝的分類
根據(jù)室溫顯微組織,鈦合金可分為三種類型:α型合金、α+β型合金和β型合金,其中α和α+β型合金的熱塑性與變形速度關(guān)系不大,而β型合金有良好的可鍛性但溫度過(guò)低可能引起α相沉淀。鈦合金的鍛造工藝按鍛造溫度與β轉(zhuǎn)變溫度的關(guān)系,分為常規(guī)鍛造與高溫鍛造。
2.1 鈦合金的常規(guī)鍛造
常用變形鈦合金通常都是在β轉(zhuǎn)變溫度以下鍛造的,稱為常規(guī)鍛造。根據(jù)坯料在(α+β)相區(qū)加熱溫度的高低,可細(xì)分為上兩相區(qū)鍛造與下兩相區(qū)鍛造。?
2.1.1 下兩相區(qū)鍛造
下兩相區(qū)鍛造一般是在β轉(zhuǎn)變溫度以下40~50℃加熱鍛造,此時(shí)初生α相和β相同時(shí)參與變形。變形溫度愈低,參與變形的α相數(shù)量愈多。與β區(qū)變形相比,在下兩相區(qū)域β相的再結(jié)晶過(guò)程急劇加快,再結(jié)晶形成的新的β晶粒不僅沿變形的原始β晶界上析出,而且在β晶界內(nèi)和α片層間的β中間層內(nèi)出現(xiàn)。經(jīng)這種工藝生產(chǎn)的鍛件強(qiáng)度很高,塑性較好,但其斷裂韌性與蠕變性能還有很大潛力。
2.1.2 上兩相區(qū)鍛造
它是在β/(α+β)相變點(diǎn)以下10-15℃的溫度下始鍛。其變形后的最終組織含有較多的β轉(zhuǎn)變組織,可提高組織的蠕變性能和斷裂韌性;使鈦合金塑性、強(qiáng)度、韌性兼得。
2.2 鈦合金的高溫鍛造
也稱為“β鍛”,分為兩種:第一種是坯料在β區(qū)加熱,在β區(qū)開(kāi)始并完成鍛造的工藝方法;第二種是坯料在β區(qū)加熱,在β區(qū)開(kāi)始鍛造,并控制很大變形量在兩相區(qū)完成鍛造的工藝方法,簡(jiǎn)稱為“亞β鍛”。與兩相區(qū)鍛造相比,β鍛造能得到較高的蠕變強(qiáng)度和斷裂韌性,還有利于鈦合金周疲勞性能的提高。
2.3 鈦合金的等溫模鍛
該種工藝?yán)昧瞬牧系某苄约叭渥儥C(jī)理來(lái)生產(chǎn)較復(fù)雜鍛件,要求模具預(yù)熱并保持在760~980℃的范圍內(nèi);液壓機(jī)以預(yù)定的值施加壓力,壓力機(jī)的工作速度由毛坯的變形抗力自動(dòng)調(diào)節(jié)。由于模具改為加熱的,不需要采用那么快的活動(dòng)橫梁去避免急冷。飛機(jī)上用的許多鍛件都具有薄壁和肋高的特征,故在航空制造中該種工藝得到了應(yīng)用,如國(guó)產(chǎn)某型機(jī)的TB6鈦合金等溫精模鍛件工藝。
3、TC4鍛件缺陷分析及工藝改進(jìn)
3.1 TC4鍛件缺陷的出現(xiàn)及分析
某廠按航標(biāo)進(jìn)行TC4鍛件試生產(chǎn)時(shí),檢測(cè)出試件幾項(xiàng)鍛件性能指標(biāo)不合格,其中“缺口應(yīng)力斷裂”指標(biāo)小于5小時(shí),針對(duì)此問(wèn)題,首先應(yīng)從TC4的金相組織形態(tài)分析,然后從鍛造工藝找原因。
3.1.1 TC4的金相組織形態(tài)特征
TC4鈦合金屬α+β型鈦合金,組成為Ti―6AL―4V,退火組織為α+β相,含有6?的α穩(wěn)定元素鋁,通過(guò)固熔強(qiáng)化使α相的強(qiáng)度得到提高,釩穩(wěn)定β相的能力較小,因此退火組織中β相的數(shù)量較少,大約占7-10?。
TC4合金在不同的熱處理和熱加工條件下,基本相α、β的比例、性質(zhì)和形態(tài)是很不同的。TC4合金的β轉(zhuǎn)變溫度在1000℃左右,若將TC4加熱到950℃,空冷后所得組織為初生α+β轉(zhuǎn)變組織;如加熱到1100℃、空冷,則得到粗大的完全轉(zhuǎn)變的β相組織,稱為魏氏組織。如果加熱和變形同時(shí)作用,影響更加明顯,將TC4合金加熱到β轉(zhuǎn)變溫度以上,但變形較小,即形成魏氏組織。其組織特征是:塑性、沖擊韌性較低,但抗蠕變能力較好。如果開(kāi)始變形溫度在β轉(zhuǎn)變以上,但變形程度足夠大,則得到的組織特征是:α相勾劃出的β晶界部分被粉碎,條狀α相部分被扭曲,稱為網(wǎng)籃狀組織。其特征是塑性、沖擊韌性較魏氏組織好,近似于等軸細(xì)晶組織,高溫持久和蠕變性能較好。如果加熱溫度低于β轉(zhuǎn)變溫度,且變形程度足夠,即得到等軸組織。其特點(diǎn)是綜合性能較好,特別是塑性和沖擊韌性較高。如果在α+β相區(qū)高溫部分變形后又經(jīng)高溫退火就混合型組織,其綜合性能好。
從以上對(duì)金相組織的分析可判斷若TC4性能下降,可能由鍛造過(guò)程中兩個(gè)環(huán)節(jié)引起:
①加熱溫度過(guò)高,達(dá)到或超過(guò)β轉(zhuǎn)變溫度;
②鍛件變形程度不夠大。
3.1.2 TC4鍛造工藝分析
鍛造溫度對(duì)α+β鈦合金的β晶粒尺寸與室溫性能的影響是隨著溫度的提高(β相轉(zhuǎn)變以上)β晶粒變大,而延伸率和斷面收縮率變小,塑性下降;為了保證TC4鍛件具有良好的綜合性能,應(yīng)在β轉(zhuǎn)變溫度以下鍛造。鈦合金變形抗力較高,但導(dǎo)熱性較差;鍛造時(shí)在合金劇烈流動(dòng)和過(guò)重錘擊下,產(chǎn)生的變形可能使鍛件個(gè)別部位溫度超過(guò)β轉(zhuǎn)變溫度,還有變形程度過(guò)大、過(guò)小等因素都會(huì)引起晶粒粗大,使性能下降。綜合上述可初步確定可能引起TC4鍛件性能不合格的原因:
①該批鍛坯加熱時(shí)溫度過(guò)高、超過(guò)β轉(zhuǎn)變點(diǎn);
②鍛造時(shí)單次錘擊過(guò)重,使單次變形程度過(guò)大,引起局部過(guò)熱和聚集再結(jié)晶,使性能下降。
③鍛后熱處理溫度過(guò)高,使TC4鍛件溫度超過(guò)了β轉(zhuǎn)變點(diǎn),形成魏氏組織,降低鍛件性能。
3.2 TC4鍛造工藝參數(shù)改變及試驗(yàn)結(jié)果
3.2.1 試驗(yàn)參數(shù)的選取和結(jié)果
針對(duì)以上分析,改變TC4鍛造工藝參數(shù)(表1)同時(shí)鍛造時(shí)注意輕打快打。(注:下料尺寸¢50×113,鍛件尺寸50×65×65)
試驗(yàn)結(jié)果:所有性能指標(biāo)均合格,其中“缺口應(yīng)力斷裂”指標(biāo)均大于5小時(shí)。
3.2.2 試驗(yàn)結(jié)果分析
(1)從爐溫及始鍛溫度看,加熱溫度并沒(méi)有過(guò)高,即使再超過(guò)20℃仍可鍛出合格件。
(2)試驗(yàn)中采用單次錘擊輕打快打,試驗(yàn)鍛件性能達(dá)標(biāo),證明輕打快打是改善鍛件性能的一個(gè)重要因素。
(3)鍛后熱處理溫度比原參數(shù)降低20℃,也可能是改善性能的一個(gè)因素,因?yàn)閺臏囟壬峡?若爐溫由于控溫偏差達(dá)到795℃,這就超過(guò)了生產(chǎn)說(shuō)明書(shū)規(guī)定的780℃,就會(huì)導(dǎo)致鍛件性能下降。
3.2.3 試驗(yàn)結(jié)果驗(yàn)證及結(jié)論
為了進(jìn)一步驗(yàn)證試驗(yàn)結(jié)果,又結(jié)合生產(chǎn)作了一個(gè)試驗(yàn)(表2),在錘擊時(shí)仍保持輕打快打的方法;結(jié)果鍛件檢測(cè)全部合格,“缺口應(yīng)力斷裂”指標(biāo)均大于5小時(shí)。
試驗(yàn)前后TC4鈦合金鍛件力學(xué)性能見(jiàn)上(表3)。通過(guò)試驗(yàn)得出結(jié)論:在進(jìn)行TC4鈦合金鍛件生產(chǎn)時(shí),應(yīng)嚴(yán)格控制鍛造的工藝參數(shù);首先注意鍛造中輕打快打,降低單次錘擊變形量,其次鍛后熱處理溫度理論值應(yīng)定在760~770℃范圍內(nèi),這樣才能保證TC4鍛件的鍛造質(zhì)量。
4、鈦合金鍛造工藝的發(fā)展前景
鈦合金的鍛造工藝廣泛應(yīng)用于航空、航天制造業(yè),等溫鍛造工藝已用于生產(chǎn)發(fā)動(dòng)機(jī)的零件和飛機(jī)結(jié)構(gòu)件上;也越來(lái)越受到汽車、電力和艦船等工業(yè)部門的歡迎。在國(guó)外,鈦合金的應(yīng)用已發(fā)展到很高的水平,應(yīng)用于更高溫度的TiAL合金及金屬間化合物已被人們所重視,并進(jìn)行了大量的研究;為了更好地應(yīng)用這些材料,同時(shí)對(duì)其變形工藝的也做了許多研究。人們還越來(lái)越重視對(duì)更高強(qiáng)度的亞β型鈦合金的研究。鈦合金的應(yīng)用及鍛造工藝的研究仍將是一項(xiàng)熱門的課題。
參考文獻(xiàn)
[1]張喜燕,趙永慶.鈦合金及應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2005.
[2]王樂(lè)安.難變形合金鍛件生產(chǎn)技術(shù)[M].北京:國(guó)防工業(yè)出版社,2005.
[3]呂炎.鍛件缺陷分析與對(duì)策[M].北京:機(jī)械工業(yè)出版社,1999.
[4]王廣生.金屬熱處理缺陷分析及案例[M].北京:機(jī)械工業(yè)出版社,2002.
[5]李成功.航空航天材料[M].北京:國(guó)防工業(yè)出版社,2002.
baojixgt.com
西工鈦手機(jī)網(wǎng)